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Abstract We determine the effects of micro-inertia density and the vortex viscosity on laminar
free convection boundary layer flow of a thermomicropolar fluid past a vertical plate with
exponentially varying surface temperature as well as surface heat flux. The governing
nonsimilarity boundary layer equations are analyzed using: first, a series solution for small �
(a scaled streamwise distribution of micro-inertia density), second, an asymptotic solution for
large � and, third, a full numerical solution implicit finite difference method together with Keller-
box scheme. Results are expressed in terms of local skin friction and local Nusselt number. The
effects of varying the vortex viscosity parameter, �, surface temperature and the surface heat
flux gradient n and m respectively against � for fluids having Prandtl number equals 0.72 and 7.0
are determined.

Nomenclature
f = dimensionless stream function
g = dimensionless microrotation
g = acceleration due to gravity
Gr = Grashof number
h = heat transfer coefficient
j = microinertia per unit mass
k = thermal conductivity of the fluid
N = angular velocity
Nu = Nusselt number
Pr = Prandtl number
qw = surface heat flux
T = temperature

u; v = velocity components
x; y = distance along and normal to the surface
 = stream function
� = viscosity coefficient
� = density of the fluid
� = rotational viscosity coefficient
� = volumetric coefficient of expansion
 = gyroviscosity coefficient
� = local microinertia density parameter
� = dimensionless normal coordinate
� = dimensionless temperature
� = dimensionless material property

1. Introduction
Buoyancy forces that arise from density differences in a fluid cause free
convection. These density differences are a consequence of temperature
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gradients within the fluid. Free convection flow is a significant factor in several
practical applications that include, for example, cooling of electronic
components.

There exist relatively few studies concerning the non-Newtonian fluids with
microstructures such as polymeric additives, colloidal suspensions, animal
blood, liquid crystals etc. Eringen (1966) developed the theory of micropolar
fluids, which shows microrotation effects as well as microinertia. The theory of
thermomicropolar fluids was developed by Eringen (1972) by extending the
theory of micropolar fluids. Gorla (1983) investigated the forced convective heat
transfer to a micropolar fluid flow over a flat plate. Jena and Mathur (1981), by
means of similar method, studied the free convective heat transfer to a
thermomicropolar fluid along a vertical flat plate. Recently, Hossain et al. (1995)
and Hossain and Chowdhury (1995) investigated the effect of material
parameters on the mixed convection flow of thermomicropolar fluid from a
vertical as well as a horizontal heat surface, taking into consideration that the
spin-gradient viscosity is non-uniform. In these analyses, they obtained
appropriate transformations to demonstrate the flow in the entire mixed
convection regime and the results of the resulting equations were obtained
using the implicit finite difference method.

In this paper, we have studied the problem of natural convection boundary
layer flow of a micropolar fluid over a vertical plate with non-uniform surface
temperature or heat flux conditions. The numerical results revealed the
presence of a two-layer structure as the distance from the leading edge
increases. The existence of an inner layer close to the wall is due to the
restriction imposed by the wall on the rotation of the microelements in a fluid,
as explained by Rees and Bassom (1966). An asymptotic analysis for large
distances away from the leading edge is presented since accurate numerical
results are difficult to obtain in this region because of the near-wall regime.
Numerical results for the friction factor and Nusselt number are presented for
different values of the material parameters of the fluid.

2. Mathematical formalisms
A two-dimensional steady free convection flow of a viscous incompressible
thermomicropolar fluid along a non-isothermal vertical flat impermeable plate
is considered. The temperature of the ambient fluid is assumed to be uniform at
T1 while the temperature at the surface of the plate is considered to be
proportional to xn and the surface heat flux to xm (x measures the distance from
the leading edge along the surface of the plate and m; n are dimensionless
temperature gradient parameters). The flow configuration and the coordinate
system are shown in Figure 1.

Under the usual Boussinesq approximation, the flow is governed by the
following boundary layer equations (Jena and Mathur, 1951):
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where, u; v are respectively the x and y-components of the velocity field, � is the
kinematic coefficient of viscosity, T is the temperature of the fluid in the
boundary layer, p is pressure, � is the density of the fluid, g is the acceleration
due to gravity, � is the coefficient of volume expansion, and � is the thermal
diffusivity, Cp is the specific heat at constant pressure, N is the microrotation
component normal to (x; y)-plane, j is the micro-inertia density, � is the vortex
viscosity,  is the spin-gradient viscosity given by  � ��� �=2�j (see Rees
and Bassom, 1966). We follow the works of many recent authors by assuming
the microinertia density, j, as constant.

The boundary conditions to be satisfied are

y � 0 : u � v � 0; T � Tw�x� and k
@T
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� ÿq�x�; N � ÿs
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In equation (5), we have followed Rees and Bassom (1966) by assigning a
variable relation between N and the surface shear-stress; where s is the micro-
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Figure 1.
The coordinate system
and the flow
configuration
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rotation parameter. The value s = 0 corresponds to the case where
particle density is sufficiently great that microelements close to the
wall are unable to rotate. The value s = 1/2 is indicative of weak
concentrations and when s = 1, we have flows which are representative of
turbulent boundary layer (see Peddieson and McNitt). Throughout
the present investigation we shall consider value of s = 1/2. Further, in
equation (5), the conditions at the surface of the plate, i.e. at y = 0, the
former one is for the nonisothermal plate and the latter for the non-uniform heat
flux.

Prescribed surface temperature
For the nonisothermal plate, we introduce the following variables

 � �Gr1=4
x f ��; ��; N � �

x2
Gr3=4

x g��; ��; � � Tÿ T1
Tw ÿ T1

; Tw ÿ T1 � T0x
n

� � y

x
Gr1=4

x ; � � x2

j
Grÿ1=2

x

�6�

where � is the pseudosimilarity variable, � is the local nonsimilarity variable
that measures the streamwise distribution of the combined effects of the
microinertia density and the buoyancy force defined thereby, and  is the
stream function such that u � @ =@y and v � ÿ@ =@x;T0 is a constant, n is
the temperature gradient parameter, such that

n � d ln�Tw ÿ T1�
d ln x

�7�

Introducing the transformation given in equation (6) into the set of equations
(2)-(4) one gets
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where

Pr � �

�
;Grx � g��Tw ÿ T1�

�2
x3and� � �

�
�11�

represent, respectively, the Prandtl number, the local Grashof number for the
nonisothermal plate and spin-gradient viscosity.

The corresponding boundary conditions given in (5) take the form

f �0; �� � f 0�0; �� � 0; ��0; �� � 1; g�0; �� � ÿ1
2f
00�0; ��

f 0�1; �� � 0; ��1; �� � g�1; �� � 0
�12�

where primes denote differentiation of the functions with respect to �.
At this stage, it is worthwhile to draw attention to the case for which

equations (8) - (10) are satisfied by similarity solutions; this is when � � 0.
The solutions of equations (8)-(10) together with boundary conditions (12)

enable us to calculate various flow parameters, such as the local skin-friction,
Cf , the local Nusselt number, Nux, at the surface and the distribution of local
couple-stress, Mx, in the boundary layer from the following relations:

1
2Gr1=4

x Cf � 1� 1

2
�

� �
f 00��; 0� �13�

Grÿ1=4
x Nux � �0��; 0� �14�

and

Mx��; �� �  @N=@y� �
�g��Tw ÿ T1�j � �1��=2�g0��; �� �15�

Prescribed surface heat flux
For the free convection flow along a vertical plate with non-uniform surface
heat flux, the following variables may be introduced

 � �Gr1=5
x f ��; ��; N � �

x2
Gr3=5

x g��; ��; T ÿ T1 � qx

k
Grÿ1=5

x ���; ��;

q � q0x
m � � y

x
Gr1=5

x ; � � x2

j
Grÿ2=5

x ; Grx � g�q

k�2
x4 �16�

where, q0 and m are constants, � is the pseudosimilarity variable and � is the
local nonsimilarity variable that measures the streamwise distribution of the
combined effects of the microinertia density and the buoyancy force for the
present case. Introducing the above transformations, given in equation (16),
into the set of equations (2)-(4) we get
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The corresponding boundary conditions given in (5) take the form

f �0; �� � f 0�0; �� � 0; �0�0; �� � ÿ1; g�0; �� � ÿ1
2f
00�0; ��

f 0�1; �� � 0; ��1; �� � g�1; �� � 0
�20�

As before, here also, the primes denote differentiation of the functions with
respect to �.

In this case, the various flow parameters, such as the local skin-friction, Cf ,
the local Nusselt number, Nux, at the surface and the distribution of local
couple-stress, Mx, in the boundary layer may be calculated from the following
relations:

Grÿ3=5
x Cf � 1� 1

2
�

� �
f 00��; 0� �21�

Grÿ1=5
x Nux � 1=���; 0� �22�

and

Mx��; �� �  @N=@y� �
�g��Tw ÿ T1�j � 1� 1

2�
ÿ �

g0��; �� �23�

3. Method of solutions
In this section we discuss the solution methodologies of the local nonsimilarity
equations governing the flow past the flat plate with variable surface
temperature as well as for the plate with prescribed variable surface heat flux,
namely, the series solution method, the asymptotic solution method and the
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implicit finite difference method respectively for small, large and all values of
buoyancy and microrotation parameter, �.

Series solutions for smaller � (SRS)
To get the solutions of the present problems for small values �, we expand the
functions, f , g, and � in powers of �, substitute in the set of equations (8)-(10) for
the case of prescribed surface temperature and (17)-(19) for the prescribed
surface heat flux case and equate the coefficients of �:n and get the following
sets of equations:

For n = 0:

�1���f 0000 � P1f0f
00
0 ÿ P2f

0
0

2 � �00 ��g00 � 0 �24�

�1� �
2 �g000 � P1f

0
0g0 ÿ P3f

0
0g0 � 0 �25�

1
Pr�
00
0 � P1f0�

0
0 ÿ P4f

0
0�0 � 0 �26�

Boundary conditions are

f0�0� � f 00�0� � 0; �0�0� � 1 or �00�0� � ÿ1; g0�0� � ÿ1
2f 000 �0�

f 00�1� � 0; �0�1� � g0�1� � 0 �27�

For n � 1:

�1���f 000n � �0n ��g0n �
Xn

k�0

�P1 � �nÿ k�P0�fkf
00
nÿk

ÿ�2P2 � �nÿ k�P0�f 0nÿkf
0
k � 0

�28�

�1� �
2 �g00n ÿ��2gnÿ1 � f 00nÿ1� �

Xn

k�0

�P1 � �nÿ k�P0�fkg
0
nÿk

ÿ
Xn

k�0

�P3 � �nÿ k�P0�gnÿkf
0
k � 0

�29�

1
Pr�
00
n �

Xn

k�0

�P1 � �nÿ k�P0�fk�
0
nÿk ÿ �P4 � �nÿ k�P0�fnÿk�k � 0 �30�

Corresponding boundary conditions take the form
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fn�0� � f 0n�0� � �n�0� � 0 or �0n�0� � 0; gn�0� � ÿ1
2f 00n �0�

f 0n�1� � �n�1� � gn�1� � 0
�31�

where

P0 � 1

2
�1ÿ n�; P1 � n� 3

4
; P2 � n� 1

2
;

P3 � 3n� 1

4
; P4 � n �32�

for prescribed surface temperature and

P0 � 2

5
�1ÿ n�; P1 � m� 4

5
; P2 � 2m� 3

5
;

P3 � 3m� 2

5
; P4 � 1ÿm

5
�33�

for prescribed surface heat flux case.
Solution methodology of the above sets of equations for selected values of

the parameters Pr and � is the sixth order implicit Runge-Kutta-Butcher
method in collaboration with the Natscheim-Swigert iteration technique.

Asymptotic solutions for large � (ASY)

Before we get into the asymptotic solutions, we introduce the following
function

h � g � 1
2 f 00 �34�

into the set of equations (8) - (10) and get

1� 1
2�

ÿ �
f 000 � P1ff

00 ÿ P2f
02 � ���h0 � P0� f 0

@f 0

@�
ÿ f 00

@f

@�

� �
�35�

�1���h00 � P1fh
0 ÿ P3f

0h� 1

2
�0 ÿ 2��h � P0� f 0

@h

@�
ÿ h0

@f

@�

� �
�36�

1

Pr
�00 � P1f �

0 ÿ P4f
0� � P0� f 0

@�

@�
ÿ �0 @f

@�

� �
�37�

The corresponding boundary conditions given in (12) take the form



HFF
9,5

576

f �0; �� � f 0�0; �� � 0; ��0; �� � 1 or �0�0; �� � ÿ1; h�0; �� � 0

f 0�1; �� � 0; ��1; �� � g�1; �� � 0
�38�

For the outer layer, we introduce the following

f ��; �� � F0��� � �ÿ1=2F1��� � � � �
h��; �� � �ÿ1�H0��� � �ÿ1=2H1��� � � � ��

���; �� � �0��� � �ÿ1=2�1��� � � � �
�39�

Substitution of (42) into (38) - (40) yields

1� 1
2�

ÿ �
F 0000 � P1F0F

00
0 ÿ P2F

0
0

2 ��0 � 0 �40�

1

Pr
�000 � P1F0�

0
0 ÿ P4F

0
0�0 � 0 �41�

H0 � 1

4�
�00 �42�

F0�0� � F 00�0� � 0; �0�0� � 1 or �00�0� � ÿ1

F 00�1� � 0;�0�1� � 0
�43�

1� 1
2�

ÿ �
F 0001 � P1F0F

00
1 ÿ P5F

0
0F
0
1 � P6F

00
0 F1 ��1 � 0 �44�

1

Pr
�001 � P1F0�

0
1 � P7F

0
0�1 � P8F1�

0
0 � 0 �45�

H1 � 1

4�
�01 �46�

F1�0� � F 01�0� � 0; �1�0� � 0 or �01�0� � 0

F 01�1� � 0; �1�1� � 0
�47�

Here, for non-uniform surface temperature,

P5 � 5n� 3

4
; P6 � n� 1

2
; P7 � 1ÿ 5n

4
; P8 � n� 1

2
�48�

and for non-uniform surface heat flux

P5 � 5n� 4

5
; P6 � 2m� 3

5
; P7 � m; P8 � 2m� 3

5
�49�
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For the inner layer we introduce the strained coordinate � � �� for prescribed
surface temperature and � � �1=2� for prescribed surface heat flux into the
equations (33)-(38) and the following expressions for the functions f ; h and �:

f ��; �� �
�ÿ2 f0��� � �ÿ1=2f1��� � � � �ÿ �

for prescribed surface temperature
�ÿ1 f0��� � �ÿ1=2f1��� � � � �ÿ �

for prescribed surface heat flux

8>><>>: �50�

h��; �� � h0��� � �ÿ1=2h1��� � � � �� �51�

���; �� �
1� �ÿ1=2�0��� � �ÿ1�1��� � � � �
for prescribed surface temperature
�ÿ1=2�0��� � �ÿ1�1��� � � � �

for prescribed surface heat flux

8>><>>: �52�

which finally leads, for the case of prescribed surface temperature, to

�1��=2�f 0000 ��h00 � 0 �53�

h000 � 0 �54�

�000 � 0 �55�

�1��=2�f 0001 ��h01 � 0 �56�

h001 � 0 �57�

�001 � 0 �58�
and for the case of prescribed surface heat flux

�1��=2�f 0000 ��h00 � 0 �59�

�1���h000 ÿ 2�h0 � 0 �60�

�000 � 0 �61�

�1��=2�f 0001 ��h01 � 0 �62�

�1���h001 ÿ 2�h1 � 0 �63�
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�001 � 0 �64�

The boundary conditions appropriate to these equations are

f0�0� � f 00�0� � 0; �0�0� � 1 or �00�0� � ÿ1 ; h0�0� � 0

f1�0� � f 01�0� � 0; �1�0� � 0 or �01�0� � 0 ; h1�0� � 0
�65�

Solutions of the above equations, for the case of prescribed surface
temperature, may be obtained as follows

f0 � 1

2
F 000 �0��2 ÿ �

3�2��� c�
3 �66�

h0 � c� �67�

�0 � �00�0�� �68�

f1 � 1

2
F 001 �0��2 ÿ 1

3�2��� �
3 �69�

h1 � 1
�� �70�

�1 � �01�0�� �71�

and for the surface heat flux case

f0 � 1

2
F 000 �0��2 �72�

h0 � 0 �73�

�0 � ÿ� �74�

f1 � 1

2
F 001 �0��2 �75�

h1 � 0 �76�

�1 � 0 �77�

The shearing stress and the rate of heat transfer coefficient now are given, for
the case of prescribed surface temperature, by
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f 00�0; �� � f 000 � �ÿ1=2f 001 � � � �
� �

��0

� 1� �ÿ1=2
� �

F 000 � � � �
h i

��0

�78�

�0�0; �� ��1=2��00 � �ÿ1=2�01 � � � ����0

���00 � �ÿ1=2�1 � � � ����0

�79�

for the case of prescribed surface temperature, by

f 00�0; �� � f 000 � �ÿ1=2f 001 � � � �
� �

��0
�80�

��0; �� � �ÿ1=2��0 � �ÿ1=2�1 � � � ����0 �81�

In the following section an implicit finite difference is proposed to get the
solutions in the entire � region.

Finite difference solutions (FDS)
To employ the finite difference method, the system of partial differential
equations (8)-(10) with the boundary conditions (12) for the prescribed surface
temperature case and differential equations (17)-(19) with the boundary
conditions (20) for the prescribed surface heat flux case are first converted to a
system of seven first order ordinary differential equations by introducing new
unknown functions of the � derivatives. This system is then put into finite
difference form in which the nonlinear difference equations are linearized by
the Newton's quasi-linearization method. The resulting linear difference
equations, along with the appropriate boundary conditions, are finally solved
by an efficient block-tridiagonal factorization method. The details of the
computational procedure have been discussed further, very recently, by
Hossain et al. (1995, 1998). It is important to note that in initiating this method,
the initial profiles at � = 0 for the functions f ���, g��� and ���� and their
derivative functions are incorporated from the exact solutions of the equations
(24)-(26) satisfying the boundary conditions (27). Then, for a given � the
iterative procedure is stopped to give the final values of f ���, g��� and ���� and
their derivative functions in the next procedure became less than 10±6, i.e.
j�f ij � 10ÿ6 where the superscript i denotes the number of iterations.
Throughout the computations, non-uniform grids in � direction have been
incorporated, considering � � sinh�j=a� to get quick convergence and thus
save computational times and space. Finally, it should be mentioned here that
the computations have been started with �1 = 10.01 by choosing imax = 301
and a = 100.

In the following section we discuss the results obtained from the above
analyses for both the cases.
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4. Results and discussion
Equations (8)-(10) with the boundary conditions (12) and equations (17)-(19)
together with the boundary conditions (20) have been solved by the
methodologies discussed above. The simulated results are expressed in terms
of local skin-friction and the local Nusselt number only for fluid having Prandtl
number, Pr = 0.72 and 7.0 while the value of the vortex-viscosity parameter �
= 0.0, 0.1, 2.0, 5.0 and 10.0 for both the cases for variable surface heating and
surface heat-flux. Effects of the aforementioned parameters are discussed in
detail in the following section.

For prescribed surface temperature
For the flow from a non-isothermal plate, the numerical values of local skin
friction, Gr

1=4
x Cf , and local Nusselt number, Gr

ÿ1=4
x Nux, obtained by the method

discussed above taking vortex viscosity parameter � = 5.0 and temperature
gradient parameter n = 0.5 are entered into Table I for fluids with Pr = 0.72 and
7.0 against the value of micro-rotation parameter � in the range [0, 5]. The table
also compares the numerical values of local skin friction and local Nusselt
number obtained by three methods, namely series solution, finite difference and
asymptotic solution. From this table it may be observed that the values of local
skin-friction Gr

1=4
x Cf decrease due to an increase in the value of the Prandtl

Table I.
Numerical values of
local skin friction and
local Nusselt number
for � = 5.0, n = 0.5
for the non-uniform
surface temperature
with different Pr

Skin-friction, Gr
1=4
x Cf Nusselt number, Gr

ÿ1=4
x Nux

PR 0.72 7.0 0.72 7.0

� FDM
SRS &
ASY FDM

SRS &
ASY FDM

SRS &
ASY FDM

SRS &
ASY

0.0 1.0750 1.0684s 0.6430 0.6346s 0.3655 0.3643s 0.6810 0.6863s

0.1 1.1618 1.1528 0.6988 0.7006 0.3719 0.3715 0.6945 0.7121
0.2 1.1899 1.1771 0.6996 0.7149 0.3731 0.3733 0.6961 0.7170
0.3 1.2058 1.1886 0.7129 0.7211 0.3736 0.3741 0.7003 0.7190
0.4 1.2163 1.1954 0.7130 0.7246 0.3739 0.3745 0.7012 0.7202
0.5 1.2239 1.1998 0.7175 0.7268 0.3740 0.3748 0.7025 0.7209
0.6 1.2296 1.2029 0.7196 0.7284 0.3741 0.3750 0.7078 0.7214
0.7 1.2342 1.2052 0.7252 0.7295 0.3741 0.3752 0.7097 0.7218
0.8 1.2379 1.2070 0.7275 0.7304 0.3741 0.3753 0.7099 0.7220
0.9 1.2410 1.2084 0.7284 0.7311 0.3741 0.3754 0.7102 0.7223
1.0 1.2436 1.2096 0.7304 0.7316 0.3741 0.3755 0.7111 0.7224
1.5 1.2524 1.2782 0.7473 0.7994 0.3742 0.3732 0.7144 0.7253
2.0 1.2575 . 0.7548 . 0.3742 . 0.7157 .
2.5 1.2608 . 0.7607 . 0.3742 . 0.7162 .
3.0 1.2632 . 0.7715 . 0.3742 . 0.7183 .
3.5 1.2650 . 0.7840 . 0.3742 . 0.7184 .
4.0 1.2664 . 0.7848 . 0.3743 . 0.7185 .
4.5 1.2675 . 0.7864 . 0.3744 . 0.7186 .
5.0 1.2684 1.2782a 0.7870 0.7994a 0.3744 0.3732a 0.7188 0.7253a

Notes: Here and hereafter, s and a represent the solutions due to series and asymptotic
methods respectively
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number, Pr; on the other hand, an increase in the value of the Prandtl number
leads to an increase in the value of the local Nusselt number Gr

ÿ1=4
x Nux. From

this table it can also be seen that an increase in the value of the micro-rotation
parameter, �, leads to an increase in both the skin friction Gr

1=4
x Cf and Nusselt

number Gr
ÿ1=4
x Nux;. This behavior delays for the case of skin friction and

accelerates in the case of Nusselt number as the value of the Prandtl number Pr
is increased. The results obtained by the three methods are also found to be in
excellent agreement between each other; that is, agreement of the series
solutions (SRS) for small � and the asymptotic values (ASY) for large � are
excellent with the corresponding values obtained from the finite difference
solutions (FDM).

In Figures 2(a) and 2(b) we depict the values of the skin friction and Nusselt
number respectively, for different values of the vortex-viscosity parameter �
(= 0.1, 2.0, 5.0 and 10.0) while Pr = 0.72. In these figures the curves marked by
solid, broken and the dotted curves represent, respectively, the results obtained
by the finite difference method, series solution method and the asymptotic
method. From these figures it may be seen that an increase in the value of the
vortex-viscosity parameter � leads to an increase in the value of the local skin
friction and to a decrease in the value of the local Nusselt number. We further
observe that for any selected value of the vortex-viscosity parameter �, values
of both skin friction and Nusselt number reach the respective asymptotic
values smoothly. The Nusselt number reaches its asymptotic values at smaller
�; whereas the skin friction does so at comparatively larger value of �. We
further observe that, as the value of � decreases both the skin friction and
Nusselt number reach their asymptotic values faster. Finally, it may be
concluded that the values of the skin friction and the Nusselt number obtained
by the three methods are in excellent agreement with each other when the value
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Figure 2.
Numerical values of (a)

local skin-friction and
(b) local Nusselt number

against � for � = 0.1,
2.0, 5.0 and 10.0 while Pr

= 0.72 for non-
isothermal surface with

n = 0.5
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of � is small. On the other hand, it may also be seen that, as � increases the
values of skin friction obtained by the series solution method and the
asymptotic solution method deviate more from each other.

We now discuss the effects of dimensionless temperature gradient
parameters n, on the local skin friction and the local Nusselt number. Figures
3(a) and 3(b) depict, respectively, the local skin friction and local Nusselt
number at the surface of the plate for different values of n (= 0.0, 0.5 and 1.0)
while � = 0.5 and Pr =0.72. All the results shown here are obtained from the
equations valid for non-isothermal plate. It is observed from these figures that
an increase in the value of n decreases the value of the skin friction while the
reverse case happens for local Nusselt number. We also observe that for any
selected value of n, the temperature gradient parameter, values of both the skin
friction and the Nusselt number tend to their respective asymptotic values. In
this case also we found the results from three methods in excellent agreement.

Prescribed surface heat-flux
The numerical values of skin friction, Gr

ÿ3=5
x Cf , and local heat transfer rate,

Gr
ÿ1=5
x Nux, showing the effect of the Prandtl number Pr for the plate with non-

uniform surface heat flux are entered in Table II against micro-rotation
parameter �. As before, this table contains the values obtained by
aforementioned flow regimes. It can be seen that an increase in the value of the
Prandtl number leads to a decrease in the values of the skin friction and an
increase in the rate of heat transfer. The effect of the micro-rotation parameter �
for different Pr on the skin friction, Gr

ÿ3=5
x Cf , and the rate of heat transfer,

Gr
ÿ1=5
x Nux, is exactly similar to the case of the flow from the non-isothermal

plate.
Figures 4(a) and 4(b) represent, respectively, values for the local skin friction,

Gr
ÿ3=5
x Cf , and local Nusselt number, Gr

ÿ1=5
x Nux, at the surface of the plate for

� = 0.1, 2.0, 5.0, 10.0 while the value of the exponent of surface heat-flux m =

1.6

1.4

1.2

1.0

Grx
1/4Cf

(a)

 0.0  1.0  2.0 3.0  4.0

FDM
SRS
ASY

0.0

0.5

1.0

n

Grx
–1/4Nux

 5.0

0.46

0.42

0.38

0.34

0.30

0.26

(b)

 0.0  1.0  2.0 3.0  4.0

FDM
SRS
ASY

1.0

0.5

0.0

n

 5.0

Figure 3.
Numerical values of (a)
local skin-friction and
(b) local Nusselt number
against � for n = 0.0, 0.5
and 2.0 while Pr = 0.72
and � = 5.0
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0.5 for fluid having Prandtl number Pr = 0.72. From these figures it is clearly
seen that the local skin friction increases and the local Nusselt number
decreases as the value of � increases. From these figures it is further observed
that both the skin friction and the Nusselt number reach their respective
asymptotic values smoothly. The difference between the values of the skin
friction obtained by the methods of series solution and asymptotic solution
becomes significant with the increased values of �.
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Figure 4.
Numerical values of (a)

local skin-friction and
(b) local Nusselt number

against � for � = 0.1,
2.0, 5.0 and 10.0 while

Pr = 0.72 for non-
isothermal surface with

m = 0.5

Table II.
Numerical values of

local skin friction and
local Nusselt number

for � =5.0, m = 0.5 for
the non-uniform

surface heat flux with
different Pr

Skin-friction, Gr
ÿ3=5
x Cf Nusselt number, Gr

ÿ1=5
x Nux

Pr 0.72 7.0 0.72 7.0

� FDM
SRS &
ASY FDM

SRS &
ASY FDM

SRS &
ASY FDM

SRS &
ASY

0.0 1.8948 1.8892s 0.7747 0.7673s 0.4606 0.4589s 0.7604 0.7610s

0.1 1.9692 1.9911 0.8190 0.8256 0.4619 0.4663 0.7623 0.7660
0.2 1.9941 2.0292 0.8229 0.8397 0.4628 0.4663 0.7671 0.7701
0.3 2.0338 2.0490 0.8304 0.8460 0.4650 0.4663 0.7707 0.7712
0.4 2.0525 2.0613 0.8325 0.8496 0.4661 0.4664 0.7714 0.7715
0.5 2.0542 2.0695 0.8501 0.8520 0.4662 0.4664 0.7718 0.7720
0.6 2.0648 2.0755 0.8505 0.8536 0.4662 0.4664 0.7738 0.7740
0.7 2.0704 2.0800 0.8536 0.8548 0.4663 0.4664 0.7750 0.7760
0.8 2.0799 2.0836 0.8540 0.8557 0.4664 0.4665 0.7767 0.7780
0.9 2.0800 2.0864 0.8553 0.8564 0.4664 0.4665 0.7770 0.7810
1.0 2.0859 2.0887 0.8779 0.8570 0.4664 0.4665 0.7779 0.7810
1.5 2.1612 2.2237 0.9015 0.9377 0.4665 0.4665 0.7780 0.7810
2.0 2.1710 . 0.9058 . 0.4665 . 0.7784 .
2.5 2.1791 . 0.9151 . 0.4666 . 0.7785 .
3.0 2.1840 . 0.9154 . 0.4667 . 0.7786 .
3.5 2.1885 . 0.9193 . 0.4668 . 0.7787 .
4.0 2.1916 . 0.9202 . 0.4668 . 0.7788 .
4.5 2.1945 . 0.9226 . 0.4668 . 0.7788 .
5.0 2.1966 2.2237a 0.9233 0.9377a 0.4669 0.4665a 0.7789 0.7810a
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We now discuss the effects of dimensionless surface heat flux exponent, m, on

the local skin-friction, Gr
ÿ3=5
x Cf , and the local Nusselt number, Gr

ÿ1=5
x Nux;. The

numerical values of the local skin friction and local Nusselt number at the
surface of the plate for different values of m (= 0.0, 0.5 and 1.0) while � = 0.5
and Pr = 0.72 are depicted in Figures 5(a) and 5(b) respectively. From these
figures one may easily observe that an increase in the value of m leads to an
increase in the value of the local skin friction, Gr

ÿ3=5
x Cf , and a decrease in the

value of the local Nusselt number, Gr
ÿ1=5
x Nux, which is just opposite to the case

of non-isothermal plate. But, here, also one may observe that both the skin
friction, Gr

ÿ3=5
x Cf , and the Nusselt number, Gr

ÿ1=5
x Nux, reach their respective

asymptotic values as shown by the broken curves at any specific value of m.
In all the above figures the solid, dotted and broken curves represent,

respectively, the finite difference solutions, perturbation series solutions and
the asymptotic solutions. The comparison of the dotted and the broken curves
with the solid one are found in excellent agreement. These comparisons also
claim the accuracy of the finite difference solutions, since exact solutions of the
equations for the cases small and large � were obtained, in which case the
tolerance of convergence was considered as 10±6.

5. Concluding remarks

In the present study we have investigated the effects of microinertia density

and the vortex viscosity on laminar free convection boundary layer flow of a

thermomicropolar fluid past a vertical plate with varying surface temperature

as well as varying surface heat flux. The governing boundary layer equations

have been simulated employing three distinct methods, namely:
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Figure 5.
Numerical values of (a)
local skin-friction and
(b) local Nusselt number
against � for m = 0.0,
0.5, and 1.0 while Pr =
0.72 and � = 5.0
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(1) the series solution for small � (a scaled streamwise distribution of micro-
inertia density);

(2) the asymptotic solution for large �; and

(3) the implicit finite difference method together with Keller-box scheme.
Results are expressed in terms of local skin friction and local Nusselt
number.

The simulated results are expressed in terms of the local skin-frictions and
Gr

1=4
x Cf and Gr

ÿ3=5
x Cf respectively, for prescribed surface temperature and

prescribed surface heat flux case and the local Nusselt numbers Gr
ÿ1=4
x Nx and

Gr
ÿ1=5
x Nx, respectively, for prescribed surface temperature and prescribed

surface heat flux case.
From the present investigation it may be concluded that:

. For both the non-isothermal and variable surface heat flux plates, as the
value of the Prandtl number, Pr, increases, the value of the local skin
friction at the surface decreases and that of the local Nusselt number
increases.

. An increase in the value of the vortex viscosity parameter, �, leads to an
increase of the local skin friction and a decrease of the local Nusselt
number for both the non-isothermal and non-uniform surface heat flux
cases.

. An increase in the value of the surface temperature exponent, m, leads to
a decrease in the skin friction and an increase in the Nusselt number at
the surface of non-isothermal plate whereas reverse effects occur on the
skin friction and the Nusselt number at the surface due to an increase in
value of the surface heat-flux exponent, n.
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